Formation of lamellar micelle-like oligomers and membrane disruption revealed by the study of short peptide hIAPP18-27.

نویسندگان

  • Ying Wei
  • Jun Lu
  • Tong Lu
  • Feihong Meng
  • Jia Xu
  • Li Wang
  • Yang Li
  • Liping Wang
  • Fei Li
چکیده

Prefibrillar amyloid aggregates of proteins are known as cytotoxic species and a common pathogenic factor for many degenerative diseases. The mechanism underlying the formation and cytotoxicity of prefibrillar aggregates is believed to be independent of the actual nature of the amyloid protein. In this study, we monitored the formation of the peptide oligomers and examined the disruptive effects of the oligomers on liposomes using the human islet amyloid polypeptide fragment hIAPP18-27 as a model peptide. We observed various morphologies of oligomers formed at different aggregation stages that precede the formation of mature amyloid fibrils. These oligomer species were sufficiently stable to maintain their structures and properties under acidic conditions. We presented the first evidence that an oligomer species with a lamellar crystalline structure and a size of about 20-60 nm in length, 8 nm in width and 1.5 nm in thickness was the most disruptive to the membrane containing the anionic component and toxic to the INS-1 cells. Our results showed that short peptides, in light of their slower fibrillation, could be used as a model system in the study of the toxic mechanism of misfolding oligomers of amyloid peptides.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Silanolate Groups (SiO-) in Synthesis of Micelle Templated Silica with Various Condition of Cationic Surfactant

Based on the {S+, I-} pathway, the concentration of surfactant and surface charge density of silanolate groups control the phase transition from lamellar, to hexagonal through cubic form. The high surface charge density of silanolate groups was observed for the lamellar phase. With decrease of molar concentration of surfactant on the gel, the yield of...

متن کامل

Membrane Mediated Antimicrobial and Antitumor Activity of Cathelicidin 6: Structural Insights from Molecular Dynamics Simulation on Multi-Microsecond Scale

The cathelicidin derived bovine antimicrobial peptide BMAP27 exhibits an effective microbicidal activity and moderate cytotoxicity towards erythrocytes. Irrespective of its therapeutic and multidimensional potentiality, the structural studies are still elusive. Moreover, the mechanism of BMAP27 mediated pore formation in heterogeneous lipid membrane systems is poorly explored. Here, we studied ...

متن کامل

Molecular Characterization of a Three-disulfide Bridges Beta-like Neurotoxin from Androctonus crassicauda Scorpion Venom

Scorpion venom is the richest source of peptide toxins with high levels of specific interactions with different ion-channel membrane proteins. The present study involved the amplification and sequencing of a 310-bp cDNA fragment encoding a beta-like neurotoxin active on sodium ion-channel from the venom glands of scorpion Androctonus crassicauda belonging to the Buthidae family using r...

متن کامل

Competitive particle growth at different conditions of oligo-micelle formation in hydro-alcoholic solution of anionic double-chain emulsifier via batch emulsion polymerization of vinyl chloride

The condition of oligo-micelle formation of sodium di-isodecyl sulfosuccinate (SDIDS) emulsifier in hydroalcoholic solutions is used to study particle formation of vinyl chloride emulsion polymerization in a batch reactor. The change on micellization behavior was investigated by critical micelle concentration (CMC) and zeta potential parameters. To detect the occurrence of secondary nucleation ...

متن کامل

Effect of Solvents on the Synthesis of SrAl2O4 Nanoparticles by Reverse Micelle Process

Three types of solvents with different polarity (cyclohexane, toluene and benzene), a nonionic surfactant Span 40 were used to prepare strontium aluminate (SrAl2O4) spinel nanoparticles by a reverse micelle method. The structure of SrAl2O4 nanoparticles was characterized by X-ray diffraction (XRD). The morphology and size of the synthesized materials were studied using field emission scanning e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 43  شماره 

صفحات  -

تاریخ انتشار 2016